Maximum Weight Independent Sets in Odd-Hole-Free Graphs Without Dart or Without Bull

نویسندگان

  • Andreas Brandstädt
  • Raffaele Mosca
چکیده

The Maximum Weight Independent Set (MWIS) Problem on graphs with vertex weights asks for a set of pairwise nonadjacent vertices of maximum total weight. Being one of the most investigated and most important problems on graphs, it is well known to be NP-complete and hard to approximate. The complexity of MWIS is open for hole-free graphs (i.e., graphs without induced subgraphs isomorphic to a chordless cycle of length at least five). By applying clique separator decomposition as well as modular decomposition, we obtain polynomial time solutions of MWIS for oddholeand dart-free graphs as well as for odd-holeand bull-free graphs (dart and bull have five vertices, say a, b, c, d, e, and dart has edges ab, ac, ad, bd, cd, de, while bull has edges ab, bc, cd, be, ce). If the graphs are hole-free instead of odd-hole-free then stronger structural results and better time bounds are obtained.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Domination for Some Subclasses of P_6 -free Graphs in Polynomial Time

Let G be a finite undirected graph. A vertex dominates itself and all its neighbors in G. A vertex set D is an efficient dominating set (e.d. for short) of G if every vertex of G is dominated by exactly one vertex of D. The Efficient Domination (ED) problem, which asks for the existence of an e.d. in G, is known to be NP-complete even for very restricted graph classes such as P7-free chordal gr...

متن کامل

Structure and algorithms for (cap, even hole)-free graphs

A graph is even-hole-free if it has no induced even cycles of length 4 or more. A cap is a cycle of length at least 5 with exactly one chord and that chord creates a triangle with the cycle. In this paper, we consider (cap, even hole)-free graphs, and more generally, (cap, 4-hole)-free odd-signable graphs. We give an explicit construction of these graphs. We prove that every such graph G has a ...

متن کامل

Stability number of bull- and chair-free graphs revisited

De Simone showed that prime bulland chair-free graphs containing a co-diamond are either bipartite or an induced cycle of odd length at least 6ve. Based on this result, we give a complete structural characterization of prime (bull,chair)-free graphs having stability number at least four as well as of (bull,chair,co-chair)-free graphs. This implies constant-bounded clique width for these graph c...

متن کامل

Parameterized algorithm for weighted independent set problem in bull-free graphs

The maximum stable set problem is NP-hard, even when restricted to triangle-free graphs. In particular, one cannot expect a polynomial time algorithm deciding if a bull-free graph has a stable set of size k, when k is part of the instance. Our main result in this paper is to show the existence of an FPT algorithm when we parameterize the problem by the solution size k. A polynomial kernel is un...

متن کامل

Quadratic programming on graphs without long odd cycles

We introduce a quadratic programming framework on graphs (which incorporates MAXIMUM-CUT and MAXIMUM-INDEPENDENT-SET) and show that problems which are expressible in the framework can be solved in polynomial time on graphs without long odd cycles.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Graphs and Combinatorics

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2015